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Q 23] Unsteady multiparticle creeping motions are complicated by the appearance of Basset
e ) y p €ping p y PP ¢ Set,
I virtual mass and acceleration forces and by the difficulty of calculating fluid—particle
=O interactions for three or more closely spaced particles. The present theoretical and
Eg experimental investigation explores the importance of each of these complicating

features by examining in detail the gravitational-hydrodynamical interaction between
three or more spheres falling along a common axis. The strong interaction theory
developed to describe this motion accurately satisfies the viscous boundary conditions
along the surface of each sphere and includes all the unsteady force terms in the equa-
tions of motion for the spheres. The experimental measurements for the three-sphere
chain are in excellent agreement with theoretical predictions provided the Basset force
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586 S. LEICHTBERG AND OTHERS

is retained in the dynamic force balance. These results indicate, in general, that the
Basset force is the most important unsteady force in gravitational flows at low Reynolds
numbers in which the flow configuration is slowly changing due to fluid-particle inter-
actions. The unsteady theory for small but finite Reynolds numbers shows that the
departures in particle spacings, due to the integrated effect of the Basset force, from
those predicted by quasi-steady zero Reynolds number theory grow as # for large times
and are of the order of the particle dimensions if the duration of the interaction is of
O(Re;ta/U,). Here Re,, is based on the terminal settling velocity U; and radius « of the
sphere. This condition is satisfied in most sedimentation problems of interest. Virtual
mass and particle acceleration forces on the other hand, are of negligible importance
except during a short-lived initial transient period. An intriguing new feature of the
three-sphere motion for large times was discovered. One finds that there is a critical
initial spacing criterion which determines whether the two leading spheres in the chain
will asymptotically approach a zero or a finite fluid gap as time goes to infinity.
Numerical solutions for longer chains show that there is a tendency for the leading third
of the chain to break up into doublets and triplets whereas the spheres in the latter third
of the chain tend to space out separately.

1. INTRODUCTION

The motion of particles at low Reynolds number through fluid media under the action of
gravitational forces, hydrodynamic interactions, or a combination of both, is important in the
mechanics of aerosols and suspensions, and various bio-mechanical applications, e.g. the axial
clustering of red blood cells in the microcirculation, Leichtberg, Weinbaum & Pfeffer (1976 ).

Existing theoretical analyses of the behaviour of finite clusters of particles in unbounded
creeping flow have been confined largely to various two-sphere configurations or larger dilute
systems where particle interactions are weak. The stimulus for much of the work on two spheres
is the well known exact solution by Stimson & Jeffery (1926). Experimental investigations of
the two-sphere problem by Bart (1959) and Happel & Pfeffer (1960) have shown excellent agree-
ment with the theoretical results at low Reynolds numbers (Re < 0.1).

The related problem of the interaction of three or more spheres has received much less atten-
tion. One interesting study is that of Hocking (1964) for three spheres falling side by side. The
analysis is based on a quasi-steady first order reflexion theory and is thus restricted to large
sphere spacings. The fundamental difference between particle interactions involving two and
three or more identical spheres at very low Re is that the flow configuration for the two-sphere
geometry does not change with time since the drag on each sphere is the same. In contrast, three
or more spheres have no steady state configuration since multiparticle interaction effects con-
tinually change as a function of particle spacing and velocity.

Perhaps the simplest three-sphere strong interaction problem that can be examined both
theoretically and experimentally is the axial settling of three identical spheres in a gravitational
field. Because of its simplicity the coaxial three-sphere configuration affords a convenient com-
parison between theory and experiment in which the unsteady effects of the virtual mass and
Basset forces can be carefully examined over a long time scale with large particle displacements.
The theoretical and experimental results presented in this investigation are, to the authors’
knowledge, the first carefully documented confirmation of the presence of the Basset force effect.
These results show that for slowly changing multiparticle gravitational motions the Basset force
is the most important inertial effect at low but non-zero Reynolds numbers.

The qualitative behaviour of the coaxial three-sphere problem with an initial configuration as
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UNSTEADY FORCES AT LOW REYNOLDS NUMBER 587

shown in figure 1a was first investigated experimentally by Happel & Pfeffer (1960). They
observed that if three spheres were released from rest, 1 and 2 would initially fall as a doublet at
a velocity that Stokes theory predicts would be 55 9, greater than the settling velocity of a similar
isolated sphere of the same diameter. The flow configuration shown in figure 1 a, therefore, does
not persist. As spheres 1 and 2 approach sphere 3, sphere 2 starts to accelerate due to its combined
interaction with spheres 1 and 3, as shown in figure 1 4. Finally, as sphere 2 approaches sphere 3,
2 and 3 form a doublet which continues to move away from sphere 1, figure 1¢, as long as the
spheres are allowed to settle without approaching or impinging on any boundaries. An intriguing
new facet of the three-sphere interaction problem that was discovered during the course of the
present investigation is the ‘critical initial spacing’ condition described in § 7. One finds that the
gap between the two leading spheres of three-sphere and longer chains can asymptote with time
either to zero or to some finite non-zero gap, depending on the initial configuration. A ‘critical
spacing’ curve separates the sets of initial configurations which produce these two different
asymptotic behaviours.

‘ doublet

10,
TORNTONA %

(@) (v)

Ficure 1. Gravity settling of three spheres.

In principal the quasi-steady state Stokes drag on a sphere in strong interaction can be deter-
mined by one of several approaches: the method of reflexions, finite element methods, or the
boundary method used in' this work. The method of reflexions, developed by Smoluchowski
(1911) and used widely by others, is most satisfactory for weak interactions in which only a single
reflexion from each boundary is required. The method converges very slowly for closely spaced
objects and is laborious to apply when multiple reflexions from more than two solid bodies are
considered. Several investigators have recently applied finite-element methods to multiparticle
slow flows. For example, Skalak, Chen & Chien (1972) have used the method to model capillary
blood flow. The red cells are simulated by bi-concave disk-shaped solid particles which are
equally spaced and axisymmetrically located in a circular tube. This method is a very promising
technique for studying irregular but identical particles with periodic spacing.

Of the three methods the one that offers the greatest flexibility, ease of application, and
accuracy for treating closely spaced multiparticle flows is the discrete point boundary method
developed by Gluckman, Pfeffer & Weinbaum (1¢71) and Gluckman, Weinbaum & Pfeffer

43-2
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588 S. LEICHTBERG AND OTHERS

(1972). In the former paper it is shown that the disturbances due to each submerged sphere or
spheroid in an arbitrary coaxial distribution of spheres or spheroids can be exactly represented
by an infinite series of multilobular disturbances, or multipoles, located at the origin of each
object. These disturbances are described by the simply separable singular solutions of the axi-
symmetric Stokes equation written in a local spherical or spheroidal coordinate system corre-
sponding to the surface of each object. Solutions to any degree of accuracy can be obtained
depending on the order of truncation or number of multipoles retained in the solution. Since the
method is one of truncation rather than iteration, in which all particles are treated simultaneously
for interactions of any order, the solution procedure converges extremely rapidly and provides
good drag estimates even for the lowest-order truncation. For example, in the most extreme case
of two spheres touching, the first, third and fifth order truncation solutions yield drag approxima-
tions which are within 2.5, 0.14 and 0.001 9, of the exact solution, respectively. In Gluckman ez al.
(1972) this theory is extended to treat the axisymmetric flow past an arbitrary body of revolution

Section 2 briefly summarizes the dynamic equation of motion for a single sphere, while § 3
describes how each of the force components must be modified for a multiparticle system. The
quasi-steady equations for axisymmetric creeping flow with particle interaction are presented
in § 4. Section 5 describes the near collision behaviour of two spheres that approach each other
with a finite relative velocity. The numerical solution of the nonlinear dynamic equations of
motion is discussed in § 6. Sections 7 and 8 present the results for three-sphere and longer chains,
respectively, which are settling coaxially under the effect of gravity.

2. FORMULATION OF THE DYNAMIC EQUATIONS OF MOTION FOR
A SINGLE SPHERE

The momentum equation for unsteady creeping motion is

v ,
w = VT (2.1)

To eliminate the pressure one takes the curl of (2.1)

d(curl V)

— 2
= = vVi(curl V). (2.2)

Landau & Lifshitz (1959) present an elegant analysis of equation (2.2) and solve it for the case
of a single sphere moving slowly with velocity U(f) in a viscous fluid. The solution is found by
representing the velocity U(t) as a Fourier integral,

U =" Ueotdo,
where U, is the solution to (2.1) for a sphere oscillating with frequency w. The expression for
the drag force F on the sphere is given in terms of U(¢) as
dU 1 (tdU dr
= 2npad—— i~ | =2 2.3
F = 6nuUa+ ¢npa T + 6npa \/(TCV)JO & Ji=7)" (2.3)
Equation (2.3) shows that there are three basic contributions to the drag force on a sphere
undergoing an arbitrary slow motion in a viscous fluid. The first force component in equation
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UNSTEADY FORCES AT LOW REYNOLDS NUMBER 589

(2.3) is the steady-state Stokes drag contribution. The remaining two terms represent unsteady
contributions to the drag force - the virtual or hydrodynamic mass contribution and the Basset
force (after Basset 1888; see Brenner 1961).

The complete equation of motion for the unsteady settling of a single sphere at low Re in an
unbounded viscous fluid is obtained by adding the gravity and buoyancy forces to the three
dynamic forces in (2.3) and equating the sum to the acceleration force of the sphere

JU dU 1 tdU dr
4 3 ___:4 3 — f— -_ 30— — 2 dAr
§ma’ps-; = §ma’(ps — p) g — bnpla—§na’p— — bmua «/(nV)fo dr J(t=7)’

where a is the sphere radius, ps the sphere density, p the fluid density, and  is the fluid
viscosity = vp.

The simple summation of forces (2.4) is strictly valid only in the limit as Re approaches zero
where the governing equation (2.1) is linear. The terminal settling velocity Ut is found from (2.4)
by settling dU/d¢ = 0,

(2.4)

2 —
U, = 22 ps—p)g

5 (2.5)

In order to determine the relative magnitude of each of the terms appearing in (2.4) all the
variables will be made dimensionless by introducing characteristic reference quantities. Denoting
dimensionless variables by a tilde,

U=UU, i=tUla, p=psp, (2.6)

and substituting in (2.4), one obtains

. ..dU0 9Ret ridU d7
Re.(7+4) 7 = 90 -0) - T | s (2)
where Re, — 2aVUt _ %zf % (2.8)

is the Reynolds number based on the sphere’s diameter and terminal settling velocity.

The Reynolds number defined in (2.8) represents the ratio of two characteristic reference
times, a molecular diffusion time 4%/v, and a macroscopic time a/U; characterizing the hydro-
dynamic-gravitational interaction. One therefore suspects that when Re, < 1 there are two
time scales in the problem of spheres which start falling from rest. On the longer time scale £
defined in (2.6), whose dimensional characteristic time is a/U;, the unsteady terms in (2.7) are
higher order in Re,,. If the solution for Uis written as an expansion in half-powers of the Reynolds
number

U= 3 Reir U, (2.9)

n=0
one can readily show that the solution to equation (2.7) for large times is
O,=1, 0,=0,=...=0. (2.10)

An isolated sphere thus achieves a constant settling velocity since in the absence of other
boundaries the flow geometry is constant. In contrast, the solution for U, is not constant even for
large times if three or more spheres are present since hydrodynamic interactions slowly change
the sphere spacing and settling velocity as the motion progresses. The interesting observation
whose implications have not been studied before is that on the long time scale over which these
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590 S. LEICHTBERG AND OTHERS

hydrodynamic interactions occur, the Basset force term which is O(Re?) dominates over both
the inertial and virtual-mass terms which are O(Re,,) in equation (2.7). One can also show that
on this long time scale, the convective ¥+ VV term in the Navier-Stokes equation is O(Re,) by
comparison with the viscous and pressure terms, and thus may also be neglected in comparison
with the Basset force to O(Rek). The coaxial settling of three spheres thus provides a simple
convenient experiment in which the presence of the Basset force can be experimentally verified
and theoretically examined over a long time scale.

Itis evident that (2.10) cannot satisfy the initial condition, U = 0, and that a shorter time scale
must exist, representing the initial period of rapid acceleration dU/d? > O(1), during which the
spheres attain their quasi-steady settling velocity. Inspection of (2.7) suggests that during the
initial period we redefine dimensionless time by

t* = Re il
Substituting in (2.7), one obtains

dU0

*d0 e
(p+4) e = 901~ 0) — 2 :

V@) Jo de* J(t* %)
One observes that all terms in (2.11) are O(1) and must be retained during the initial period in
which dU/dt* = O(1) and 7 is of O(Re,,). On the other hand, the nonlinear V-VV term in the
Navier-Stokes equation is O(Re) smaller than the viscous and unsteady inertia terms on this
shorter time scale. It is therefore consistent to neglect convective inertial effects while retaining
the unsteady inertial, virtual-mass and Basset forces in (2.11). Experimentally, the importance
of the Basset force is difficult to isolate on this time scale since the initial transient phase is short-
lived and the other unsteady forces are of the same order.

(2.11)

3. CORRECTION OF THE DYNAMIC FORCES

In order to apply (2.4) to alow Re flow system with three or more spheres, each of the dynamic
force contributions must be modified to take into account particle interaction effects. Each
dynamic force correction will be considered separately in the next three subsections.

(a) Stokes drag force, Fy4.

The viscous drag term used in the dynamic equations (2.4) and (2.7) is the well-documented
Stokes drag force on a single sphere settling in an unbounded viscous fluid for Re < 1,
F,, = 6npual. When more than one sphere is present in the system, this expression for the drag
force can be simply modified to account for particle interaction effects on each sphere by intro-
ducing an interaction parameter A; which is a function of all the sphere spacings and velocities
and is defined for sphere j by

Fq. ; = 6npuljal,. (3.1)
The multipole truncation technique, developed in Gluckman et al. (1971) for multiple equally
spaced coaxial spheres and spheroids is ideally suited for the computation of A;.

The geometry being considered is shown in figure 2 for N spheres. The exact solution for the
stream function from Gluckman ef al. (1971) is given by the superposition of N infinite series
representing the disturbance produced by each of the N spheres.

5 [ Bty ™ o Doyt "1 Tn(&) (3.2)

/

N
Y= X
=1

J n
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UNSTEADY FORCES AT LOW REYNOLDS NUMBER 591

where 7, (¢) are Gegenbauer functions of the first kind,
r=[(z—2z)2+ R}, { =cosl; = (z—2z)r,
z;1s the z coordinate of centre of sphere j, and B,,;D,,; are constants.
Each term in the inner summation, termed a multipole, is a fundamental singular solution of

the steady creeping motion equation obtained by dropping the unsteady term in equation (2.1)

r (2.2). Each fundamental solution contains an amplitude function shown in brackets and a
multilobular Gegenbauer function 7,({;). The B,; and D, ; coefficients which fix the strength
of the multipole are determined by satisfying the no slip boundary conditions over the generating
arcs of all spheres simultaneously, i.e.

10y
I/;_RaRuUj’
onr;=a;j=1,...,N (3.3)
yo— 1% _
BE™ " ROz T

To satisfy the boundary conditions (3.3) exactly along the entire surface of each sphere would
require the solution of an infinite array of unknown coeflicients. However, solutions to any
desired accuracy can be obtained by a uniform truncation of each of the infinite multipole series.

RA

U,
g )

0N—1 \ 0N \
»7

a
6, 0, Vs, ! >
j=1 f 2 } 3 ‘/V‘ N-1 N
E—p
2D,, 2D23————>l L.Z’Qw,x

Ficurke 2. Geometry of N-sphere system.

The two unknown coefficients in each multipole permit one to satisfy the exact no slip boundary
conditions (3.3) at one discrete point on the generating arc of each sphere. Thus, if a spherical
boundary is to be approximated by satisfying conditions (3.3) at M discrete points on its
generating arc, M terms are retained in the multipole expansion for each sphere. In general, one
obtains a set of 2 x M x N simultaneous linear algebraic equations for the 2 x A x N unknown
B,; and D,; coefficients. The desired matrix solution for these coefficients, the procedure for
choosing boundary points and the convergence properties of the solution are described in detail
in Gluckman et al. (1971).

One can show that the Stokes drag correction factor A; in (3.1) depends only on the D,
coeflicients in the series solution (3.2). This result is

A; = Dy;[1.5U;a. (3.4)
The A; are only functions of the distances between spheres and their relative velocities.

An examination of the A; for three spheres moving at the same velocity for various sphere
spacings provides the basic physical insight into the qualitative experimental observations of
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592 S. LEICHTBERG AND OTHERS

Happel & Pfeffer (1960) shown in figure 1. This is shown in figure 3 where we have plotted curves
of A; against a spacing parameter b/(b+¢) for two values of the overall spacing (b+¢). One
observes that the drag on the centre sphere is always less than the drag on either of the outer
spheres. This is due to the fact that, unlike the outer spheres, the central sphere is being acted on
directly by both neighbours. This suggests that, whatever the starting position of the three spheres,
the central sphere will attempt to approach sphere 3. Therefore, one should always move to the
right along the b/(b +¢) axis as time progresses. Finally, it is of interest to note that as spheres
2 and 3 move away from the single sphere 1, A; will approach unity, whereas A, and A, will
approach a constant value which depends on the asymptotic spacing ¢, after sphere 1 has been
left far behind.
D

0.6~ -

| | | 0 | l l | ]
0.1 0.2 0.4 0.6 0.8

spacing = bf(b+¢)

Ficure 3. A; plotted against spacing for three spheres.

——— b+c¢ = 20a; ..., b+c¢ = 4a.

(b) Virtual mass term, F, .

Virtual mass has been defined by Darwin (1953) as the mass of fluid to be added to that of the
solid in calculating its kinetic energy. Existing calculations of this additional apparent mass, as
well as its derivation, have been based on arguments derived from ideal fluid theory. For viscous
flow both the rotational and irrotational solutions in equation (3.2) contribute to the kinetic
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UNSTEADY FORCES AT LOW REYNOLDS NUMBER 593

energy of the fluid. The potential flow component of the solution differs from ideal fluid theory in
that the normal velocity component due to just the irrotational terms in (3.2) does not vanish at
the sphere surface. Landau & Lifshitz (1959), however, show that for the case of a single sphere
moving with an arbitrary velocity ©(¢) in a real fluid at zero Re,, the virtual mass due to the sum
of the irrotational and rotational contributions is identical to that for the given sphere moving
in a potential flow with the same velocity. We shall assume that this result is also valid for more
than one sphere although a rigorous justification is theoretically difficult and not warranted for
the present application. Our purpose here is simply to obtain an estimate of the importance of
the other spheres in calculating the virtual mass contribution for any given sphere.
In general, the virtual mass (v.m.) of an object is given by

virtual mass = kM, (3.5)

where M’ is the mass of the fluid displaced by the object and £ is a configuration parameter
depending on the object shape and the interaction effects that arise from the presence of other
boundaries. For a single sphere in an infinite medium, £ = 0.5.

One can show by using Green’s theorem (see, for example, Milne-Thomson 1960, p. 89) that
when the motion is irrotational the kinetic energy of the fluid can be represented by

T= (o) §pohdd = —mp § L2 T, (3.6)

rsin 0 an
where ¢ is the velocity potential, dz is an element of normal drawn into the fluid at the element
d4 of surface, yrp is the stream function in potential flow and ds the element of integration path

along the generating arc of a body of revolution, and the integral is performed in a clockwise
sense about all boundaries. The contribution to the kinetic energy integral (3.6) from each

E:npf: Wo W g, (3.7)

7;5in 0; ar

sphere is

To find the value of £ for sphere j, which we denote as k;, we equate the time rate of change of T}
to the work done by an external force applied to sphere j to provide its acceleration. The resulting

1 (2T
k’ ——ﬂap(Uz) (3.8)

The series solution to the axisymmetric potential flow equation for the potential flow stream
function ¥, is simply the irrotational portion of the series solution (3.2). For a system of three

expression for £; is

spheres

uMw

Yp = % i7" T, (cos b;). (3.9)

j

The B,; constants in (3.9) can be evaluated by requiring that the normal velocity component

vanish at discrete points on the surface of each sphere. The method is entirely analogous to the
solution of equation (3.2) for viscous flow described in the previous subsection.

The values of T} in equation (3.7) have been calculated for various sphere configurations using

a five-term truncation to the series solution (3.9) and the configuration parameters &; evaluated

from equation (3.8). The values of k3 determined by the above procedure have been plotted in

figure 4 for the range 1 < b < 8, 1 < ¢ < 8, where 6 and ¢ are defined in the figure, assuming

44 Vol. 282. A,
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594 S. LEICHTBERG AND OTHERS

that all three spheres have the same velocity. This figure indicates that the maximum deviation
from a single sphere value £ = % occurs, as would be expected, when the three spheres are
touching. As the distance between spheres 3 and 2 increases, £, rapidly asymptotes to the single
sphere value of §. The greatest deviation exhibited by £, from the value of } is approximately 10 %,.
This deviation occurs only when spheres 2 and 3 are touching and drops off rapidly to approxi-
mately 29, when these spheres are two diameters apart. This exercise demonstrates that in a
three sphere system and, presumably, in systems of more than three spheres, particle interaction
effects influence the virtual mass associated with each sphere to a relatively minor extent, even
when the spheres are close together. Since the virtual mass forces are higher order in Re,, than

| | | [ I | ! I

/ single isolated sphere
0.50— ]

~& 048

046[—

spacing, ¢

Ficure 4. Deviation in virtual mass parameter k5 versus system geometry.

the Basset force contribution on the long time scale characterizing the important particle inter-
action effects and are significant only for the short initial period of large accelerations, the values
of £; used were considered to be constant and equal to . By similar arguments, the assumption
of using the potential flow value of } for Stokes flow is reasonable, although this assumption has
not been rigorously justified for the viscous motion of multi-body systems. The errors introduced
by these assumptions should be small, while the assumptions themselves allow computing times
to be reduced substantially.
(¢c) Basset force, Fy

The Basset force exerted on a sphere moving with an arbitrary velocity U(¢) can be constructed
as a superposition integral in which the unit velocity impulsive motion of the sphere is treated as
the basic solution. In the basic solution each segment of the solid boundary is treated locally as a
Rayleigh problem for the impulsive motion of a flat plate. Unless the boundary continues to
accelerate and generate vorticity the Basset force will decay as 1/4/¢ during the initial period of
acceleration, the total amount of vorticity being conserved but redistributed throughout the
flow field. A precise treatment of this force for a multiparticle problem would require that this
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basic unit solution take into account the instantaneous boundaries of the other spheres. Since the
Basset force is a higher order correction of O(Re%;) on the long time scale of significant interactions,
and convective inertia terms of O(Re) have already been neglected in the Navier-Stokes equa-
tion, it would seem reasonable to use as a lowest order approximation the unit solution for a single
sphere. The close agreement between theory and experiment presented in §7 lends further
support to this approximation.

The neglect of the boundaries of the other spheres in the unit solution for the Basset force on
the short initial time scale of large accelerations can be argued on similar grounds. From argu-
ments of§ 2, this time scale is of O(Re,,). Thus ifthe inner small time and outer large time solutions
are to be valid to the same order in a matched asymptotic sense the use of the unit solution for
a single sphere on the short time scale will introduce errors which are higher order than those
already included in the model for the long time behaviour. Thus, we shall approximate Fy ; on
both time scales by its expression for a single sphere given in (2.4).

t
Fy ;= Gnﬂaszo%%\/(td—zfr)' (3.10)
It should be noted, however, that although this approximation is valid for motion in an
unbounded medium, the effect of an enclosing boundary on the Basset force may be significant,
particularly for particles in close proximity to the wall. Transient motions in bounded media
should, therefore, be handled more carefully.

4. EQUATIONS OF MOTION FOR THREE OR MORE SPHERES

Based on the discussions presented in §§ 2 and 3, the equation of motion for any sphere j in an
N-sphere chain can be represented, using equations (2.7) and (3.1), by

9Rel (1dU; d7

Reo(p+3) 2% = o(1 - T)1) - G=12.,N).  (41)

dz J@r) ) dF J(F-7)
The position of each sphere is obtained by integrating
dx; .
—(173 =U;, (j=1,2,...,N), (4.2)

where £; is a dimensionless length #,/a, subject to initial conditions based on the initial sphere
spacing.

In accord with our previous analysis, sphere interaction effects in the N equations (4.1) are
described by the A; factors applied to each Stokes drag term, whereas both the virtual mass and
Basset forces are approximated by their single sphere expressions. This approximation should be
valid to O(Rei) on both the short and long time scales.

In the limit Re,, = 0, equations (4.1) and (4.2) reduce to

U2 =1 (4.3)
(j=12,...,N)

dz, 1

Et:] =T' (4.4)

J
Equation (4.3) which replaces the single-sphere equation (2.10) describes the behaviour on the
long time scale to lowest order for small but finite Re,,. To this order, particle interaction effects
contained in A; are undergoing changes of order unity.

44-2
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596 S. LEICHTBERG AND OTHERS

The equations of motion, equations (4.1) and (4.2) or equations (4.3) and (4.4), were inte-
grated numerically. Before describing the integration procedure and the results, we shall digress
briefly to consider the separate problem of two spheres undergoing a ‘near’ collision in Stokes
flow.

‘ﬁ:O e ) ] lﬁ:O
a
< 1 >
\\\ //l/ \‘\ /}
N e AN e

04 L—-

0 1 | 1
1078 107 1072 1 10

gap/2a

Ficure 6. Comparison of predicted and exact drags: (1) 9 points, (2) 21 points,
(3) 5 points starting at one degree.

5. ON THE NEAR-COLLISION APPROACH OF TWO SPHERES

Due to the nature of the interparticle interactions in chains of three or more spheres, the gap
separating the leading doublet of such chains must monotonically decrease with time. The
numerical results of the present work indicate that if the initial configuration falls below the
‘critical spacing’ curve in figure 7 the gap eventually tends to zero as the two spheres head
toward an apparent collision.

The equations of motion (4.1) and (4.2) do not permit this impact, since an infinite force is
theoretically required to remove the last element of fluid trapped in the narrowing gap. Indeed,
itis well known that the resistance to the approach of two surfaces is inversely proportional to the
gap between them. Since the forces in the problem are bounded, it follows that the gap will tend
to zero asymptotically, and that actual contact will not be made in any finite time.
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The problem of two spheres approaching each other is identical to the problem of a single
sphere falling toward a planar free surface. The exact solution for this problem has been developed
by Brenner (1961):

A=4sinha 3

n(n+1) [4 cosh?(n+4) @+ (2n+1)%sinh?a 1]
=1 @n—1) (2n+3) ’

2sinh (2n+ 1) & — (2n+ 1) sinh 20 (6.1)

where o = arcosh'(¢), ¢ = c/a, 2¢ is the centre-to-centre spacing between the spheres. It is seen
from (5.1) that as ¢~ 1 the drag force goes to infinity, as expected.

o771 7T T T T T

ber

bcrla

[l -

Ficure 7. Critical initial spacing curves for Re, = 0 and 0.1.

‘The multipole truncation technique developed in Gluckman et al. (1971) requires special
refinement as ¢~ 1. The difficulty stems from the fact that the coefficient matrix for the B,,; and
D,; coefficients is singular when the front and rear stagnation points are included in the set of
boundary-condition points. Exclusion of these points from the set results in a zero streamline
whose shape, shown in figure 5, deviates from sphericity near the axis, where two small cusps
appear.

It is evident from figure 5 that as ¢—> 1, special treatment must be given to the selection of
boundary points near the axis. The special procedure that has been developed for near collision
flow isillustrated in figure 6 where we have plotted the ratio of the multipole truncation technique
drag results to the exact drag (5.1) against the dimensionless gap, ¢— 1, for two approaching
spheres. In curve 1, boundary conditions are satisfied at nine points equally spaced on the gen-
erating arc, starting at € = 18°. Twenty-one points are used for curve 2, similarly distributed,
starting at 6 = 8.2°. Curve 3 is for five points, with the lowest at one degree above the centreline.
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598 S. LEICHTBERG AND OTHERS

One concludes from figure 6 that the agreement with (5.1) is excellent for large spacings, but
breaks down as the gap narrows to about 0.1, 0.03 and 0.0005 diameters for the three respective
cases. All three curves asymptote to zero as the gap vanishes and as the exact drag force becomes
infinite. The marked improvement exhibited by curve 3 over curves 1 and 2 is attributed to the
closer proximity of the lowest boundary-condition point to the centreline, reducing the size of
the cusp and allowing a closer approach before the solution breaks down. Reducing the angle
further below 1° is not rewarded with additional accuracy, since the matrix equation becomes
ill-conditioned, approaching a singular state as the angle vanishes.

In accordance with the above discussion, the particle velocities calculated in the time-
dependent solution are accurate up to a point in time just prior to the erroneously predicted
collision. At that point it will be understood that the relative velocity between the two spheres
drops rapidly toward zero and that contact can only be made after an infinite time. A similar
transient behaviour was reported by Wacholder & Sather (1974).

6. NUMERICAL INTEGRATION PROCEDURE

The time dependent velocities and trajectories of the N spheres of a given chain were calculated
numerically by integrating the equations of motion, equations (4.1) and (4.2) for 0 < Re,, < 1,
or (4.3) and (4.4) for Re,, = 0. In either case, the system of 2N equations for U,, U,, ..., Uy,
%y, %y, ..., &y is highly nonlinear, since each of the drag correction factors, A;, is itself a function of
these dependent variables, all of which enter into the matrix equation.

This matrix equation is created by the simultaneous application of no-slip boundary conditions
atall points. The boundary conditions (3.3) obtained by differentiating the general solution (3.2),
when applied at any point 7 on the generating arc of the jth sphere, can be represented as follows:

N M+1
;1 g’ [Bnqu +D7{Lqm nq] = Uj, (6.1)
a=1n (l<m<M, j=1,..,N)
UVp = 21 22 [Bnqu +D;Izqm nq] = O: (6'2)
g=1 n=
where Bram =7 am P Bu(Eam)
Dygn = 1am" [Po(Eom) +27 1 (Eam)],
” . —n—1 (n+1) n+1(§qm 6.3
Buam =1 am [ sin 6, ’ (6:3)
D’ — (ﬂ + 1) n+l(§qm) 2§qm (gqm)]
nam = T sin 0,,, ’

When repeated for all values of m and j, these equations form a system of 2 x M x N equations
for an equal number of unknown B,, and D,,, coefficients, as discussed in § 3 ().

For the sake of clarity, the integration procedure for the simpler equations (4.3) and (4.4) will
be presented first. The sphere velocities at a given time can be calculated from equations (4.3)
for any given set of sphere positions or spacings as follows. Gombining (4.3) with (3.4) yields

Dy =152 (j=1,2,...,N). (6.4)
That is, the sphere velocities are such that the viscous drag forces acting on the spheres are all

constant with time, and are equal to the buoyancy force, as expected in the absence of accelera-
tion-related effects. If D,; is replaced by (6.4) N times in each of the 2 x M x N equations of
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(6.1) and (6.2), and if the N sphere velocities, Uj, are treated as unknowns, then a simple trans-
position of terms in (6.1) and (6.2) will result in a new set of linear simultaneous algebraic equa-
tions for 2 x M x N unknowns (B, U;, B, D,;, where n = 3,4,...,M+1and j=1,2,...,N)
which is solvable by matrix reduction. Thus, the velocities which satisfy (4.3) can be calculated
directly, given the configuration, %, %, ..., #y (which must be known for the evaluation of (6.3)).

The initial conditions are set on the sphere spacings, while the initial velocities are calculated

njs 1)

as those which satisfy (4.3) at the specified initial configuration. The system cannot be prescribed
as starting from rest with Re,, = 0, since equation (4.3) is incapable of describing the short initial
acceleration period.

To integrate (4.3)-(4.4), discretize time and consider the kth time step, #,_; < 7 <, where
Iy =h_1+AL, k> 1, §, = 0, and A, is generally varying with k. The acceleration is assumed
constant over the interval

47, U= UOpir .7 e ?
(W)k_T U=12.,N b ,<I<h). (6.5)
Reasonable initial guesses for the U, , (j = 1,2, ..., N), the sphere velocities at = f,, are
dU; .
Uj,k: Uj,k_l"*'(T;) Atk (]= 1, 2,..., N). (6.6)
k-1

These velocities are used to integrate (4.4),
B =%+ 30+ Ui Al (= 1,2,.., N). (6.7)

The original guesses for U; ; can now be improved by solving for the velocities from the matrix
equation (6.1) and (6.2) as outlined above, using the latest values of &; , from (6.7) as parameters.
This process is then repeated in an iterative loop with alternate improvements on £; , and
U,r (j=1,2,...,N) by (6.7) and by (6.4) and (6.1), (6.2), respectively, until satisfactory con-
vergence is obtained.

The greatest error present in the above procedure is the one associated with the linearization
of the U,(f) curves over the A, interval in (6.7). A Taylor series expansion of U;  and &, ; about

f = [, shows this error to be

d2U;
— (AL 3( = ]) .
1?( k) d72 o1

The error’s magnitude can thus be estimated following convergence of the iteration procedure.
If it is found that the percentage error exceeds ¢, a pre-set error limit, the time interval AZ, is
halved and the computations repeated. If, on the other hand, the error is less than 0.1¢, Af is
doubled (Af,; = 2A#,) before proceeding with the computation. In this manner, the time
interval is variable, being continually optimized in order to minimize the computing time while
maintaining a desired accuracy.

The integration of the more complicated equations (4.1) and (4.2) for 0 < Re,, < 1 follows
similar lines. Initial conditions are prescribed on the particle trajectories (initial configuration)
as well as on the velocities (U; = 0,7 = 1,2, ..., N).

Considering the £th time step, one approximates (dU,/d?), by (6.5) and writes (4.1) in a finite
difference form,

1=t Bi
One = Akt Ve (6.8)
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600 S. LEICHTBERG AND OTHERS
or /\jk:_l"“f,lc+ﬂf,k_yk’ (6.9)
' Uj,x
3 k-1 7.
where o= (52) 5 (S7) (G-t - G-,
’ T 1\ df ),

Bik =Yk Uj,k—b
_ #Req(F+3) +((2/m) Re, A)}
- Afk '

When combined with (3.4), equation (6.9) becomes
Dy; = 1.5a(1— o, +p; 1) —1.5ay, Us o (j=1,2,...,N). (6.10)

The relation (6.10) is utilized in the same manner as (6.4) to transform (6.1) and (6.2)
ng (= 3,4,..., M+1and
J=1,2,...,N). Thus, once more, the set of velocities which satisfies (4.1) can be calculated

into a new matrix equation for the 2 x M x N unknowns B,;, Uj, B,;, D

directly for any given configuration, &, &, ..., X .

The rest of the procedure is identical to that described previously, with an iterative solution
converging on the final valuesof U, ; and &; ;, (j = 1,2, ..., N). Equation (6.6) provides the initial
guesses, which are alternatingly improved by (6.7) and by (6.10), (6.1), (6.2). Following con-
vergence, Af, is either doubled, unchanged or halved (with the time-step calculation retried in
the latter case), depending on the cstimated magnitude of the relative discretization error. Even
with this step-wise optimization, however, the matrix equation was solved 1000-5000 times
during the §—1 < 1 experiments, requiring 10-45s of I.B.M. 370/168 computing time for
three-sphere chains.

One notes that as Re,, — 0, the integration procedure for (4.1) reduces to that for (4.3), since
clearly (6.10) reduces to (6.4) as the Reynolds number vanishes, thus providing a proper limit
behaviour in which the short time scale of the initial acceleration period has been shrunk to zero.

7. RESULTS FOR THREE COAXIAL FREE FALLING SPHERES

In this section, the numerical results will be presented for three-sphere chains under a variety
of Reynolds numbers and initial configurations. The initial spacings considered vary in the

range 1 < by, < 10 and 1 < ¢, < 10, where
i’o = 5(0), Zy = 2(0),
b(e) = b(t)/a, £(t) = ¢()]a,

and b and ¢ are centre-to-centre sphere spacings, defined in the insert of figure 7. Subsection (a)
describes the critical spacing condition for the near collision approach of three settling spheres.
Subsection () compares the predictions of the Re, = 0 and Re,, <€ 1 theory with the experi-
mental data obtained from a typical three sphere experiment using the low Reynolds number
settling apparatus described below. The effects of unsteady inertial forces are presented in
subsection (¢) in conjunction with the results of the 0 < Re,, < 1 runs.

While the numerical experiments presented herein corroborate the qualitative observations
reported in Happel & Pfeffer (1960), there are no existing data to compare with the theory’s
quantitative predictions. For this reason, the authors have constructed a low Reynolds number
settling apparatus for the purpose of obtaining detailed measurements in which unsteady inertial
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effects could be documented. The apparatus consisted of a 2m, clear, rigid cylinder with a
constant diameter of 50 cm, which was filled with a highly viscous liquid (viscosity 18.5 gcm=1s~1,
relative density 1.06). Small, identical, plastic spheres (relative density 1.147, diameter 0.905 cm)
were released coaxially into the fluid. Accurate measurements of the particle trajectories as
functions of time were made from large-scale projections of the filmed runs, taken at known
regular intervals.

(a) Critical-spacing criterion for near-approach of spheres

The qualitative behaviour of three coaxial spheres falling at low Reynolds number was
described in § 1 for the case where spheres 2 and 3 asymptotically approach collision as illustrated
in figure 1. In simulating this behaviour in the numerical experiments a program-termination
condition had to be incorporated, taking into account the breakdown of the multipole truncation
procedure as the gap width goes to zero, as discussed in § 5. With figure 6 as a guide, an effective
collision was understood to have occurred if spheres 2 and 3 had approached to within a gap of
0.05 diameters and had a finite relative velocity which, if extrapolated, would have taken the
spheres through the contact condition ¢ = 1. When this occurred it was understood that the limit
had been reached and that the relative velocity U, — U, will asymptote rapidly to zero.

In other numerical experiments, however, the relative velocity U, — U, vanished before the
effective collision distance ¢ = 1.05 was obtained. In these situations one found that spheres
2 and 3 asymptotically approached a finite gap, while sphere 1 was already too far behind to
have any appreciable interaction with them. The unequal interactions which sphere 1 has with
the other two spheres causes sphere 2 to settle faster than sphere 3, but as the 2-3 doublet moves
away from sphere 1, the relative velocity, Uy, = U, — U,, decreases monotonically. One, therefore,
suspects, based on the following consideration of the two extreme cases b, = 1 and b, —> 0, that
there is a critical configuration condition which determines whether for a specified ¢, an effective
collision between the two lead spheres will be achieved.

In the case of spheres 1 and 2 initially touching (8, = 1), sphere 2 will always close its gap with
sphere 3, regardless of the initial spacing ¢;. Even for an arbitrarily large ¢, spheres 1 and 2 can
settle as an isolated doublet for as long as is necessary to approach and fall under the influence of
sphere 3. On the other hand, if sphere 1 is initially very far away from sphere 2 (§,—>c0), the
2-3 doublet will forever be isolated and settle with U, = U, > U,. We conclude, therefore, that
for any initial spacing &, there must exist some critical initial spacing 5, = ber, such that when
by < ber the lubrication limit would be reached, and when &, > b¢r the relative velocity Uy would
vanish with the inter-particle gap still open.

Accordingly, a series of numerical experiments was conducted to determine ber(éy). The
results are tabulated in table 1 and are plotted in figure 7 for 5 = 1.1 and Re,, = 0.1 and 0. Any
combination of initial spacings located under the curve will result in a ‘near’ collision.

TABLE 1. VALUES OF GRITICAL SPACING b, FOR § = 1.1

50 5'm‘ (Reoo = 0) Zcr (Reoo = 0‘1)
1.2 6.428 6.545

1.6 2.845 2.995

2 2.102 2.273

3 1.553 1.659

4 1.355 1.470

7 1.170 1.301
10 1.113 1.246

45 Vol. 282. A.
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602 S. LEICHTBERG AND OTHERS

(b) Comparison of theoretical and experimental results

As mentioned earlier in this section, experimental data were collected for the time-dependent
settling of three coaxial spheres. The data for a typical run Re,, = 0.011, 5 = 1.08, b, = 1.63,
and ¢, = 7.38 are compared with the theoretical predictions in figure 8. The agreement between
theory and experiment was found to be excellent provided the unsteady forces are retained in
equation (4.1). One also observes in figure 8 that the solution curve based on the full equation
(4.1) is virtually indistinguishable from the one obtained when the only unsteady force retained

28 T T | I T T T | T

24
20
16

LN

12

; |
) 40 80 120 160 200

Ficure 8. Comparison of theory with experimental data on sphere spacings; by = 1.63, ¢, = 7.38. ——, Re,, =
0.011, 5 = 1.08 theory, all forces. -—:—, Re,, = 0.011, 5 = 1.08 theory, Basset force only. —~—, Re, = 0
theory. O, Experimental data.

in equation (4.1) is the Basset force. In contrast, the Re,, = 0 theory based on equations (4.3) and
(4.4), in which all unsteady forces are neglected, leads to discrepancies which progressively
increase with time. The maximum deviation between theory and experiment when the Basset
force effect is included is 2.9 %,. T

At first glance, it is somewhat surprising that the presence of the Basset force for large times
7 > 80 leads to a difference in sphere spacing & in figure 8 which is of O(1) or larger compared to
the sphere dimensions when the velocity difference due to the Basset force decays as -3, This
basic behaviour can be deduced from the following approximate analysis. For large times the
virtual mass and acceleration forces can be neglected to O(Ret) with the result that equation

(4.1) reduces to
g1 1 Re}, (1d0; df

=N R G o & TR (71

+ Based on the theory presented in Leichtberg, Pfeffer & Weinbaum (1976 a), the wall correction factors are
1.057 on the central sphere and 1.069 on the outer ones. The pertinent quantity for figure 8 is their difference,
1.29,, which was neglected.
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Inserting this result into the expression db/df = 4(U,— U,) for the time rate of change of the
spacing between spheres 1 and 2, one obtains
048 _ A2y Re%off<1 dU, 140,

dr
TN o Jo\N aF A, (7.2)

A, df Az_&? ) NE=F)"
If the period of the initial rapid acceleration # is short compared to the current time # (the upper
limit of the integral in (7.2)) and the contribution of the small accelerations to the Basset force
integral for times larger than #s are neglected, equation (7.2) can be approximated by
2(_1@2 _ /\1—/\2+ 1 (Rew)i*(U;IS_ %)
di — A, AJ(@m)\ ¢ AL A

¢
where Uy, and U, are the sphere velocities at time #. For £ 1, two important results are readily

0

(7.3)

deduced from equation (7.3). First, the integral of the Stokes drag term increases nearly linearly
with time (note that the curve for Re,, = 01is nearly linear for # > 80 in figure 8), since the A; are
changing very slowly for these large times. Second, the velocity difference due to the second term
on the right hand side of equation (7.3) is of O(Re,/)¥ and thus of O(Re,,) when #is of O(RezY),
the time period where the sizeable differences between the Re,, = 0 theory and the experimental
data are observed in figure 8. The velocity difference due to this term is of 0(10-2) and thus too
small to account for the observed velocity differences. The unexpectedly large deviation from the
Re,, = 0 theory results is due to the important effect of the Basset force on the A; factors in the
first term on the right hand side of equation (7.3). As will be discussed later in connection with
table 2 and figure 11, the Basset force has an important influence on the relative velocity differ-
ence of the spheres in the intermediate time period O(Re,,) < # < 0(102Re,,) between the decay
of the virtual mass and inertial forces and the establishment of the long time quasi-steady
behaviour. The integrated effect of the Basset force during this intermediate time interval pro-
duces a significant change in the U; and hence the A; and is thus able to appreciably alter the
long time trajectories of the spheres by changing the initial conditions for the long time scale
transient motion.
(¢) Effects of unsteady forces at low Reynolds number

The significant difference between the results of the Re,, = 0 and the 0 < Re,, < 1 theoretical
predictions and the close agreement between the experimental data and the theory for the ful}
equation (4.1), as illustrated in figure 8, strongly motivate a more detailed numerical study of the
contributions of the various unsteady forces at low Re,, on both the short and long time scales.

Figures 9 and 10 are velocity—time profiles for each sphere in a typical numerical experiment
which leads to near collision, b, ~ 1, & = 10, 5 = 1.1 at Re, = 0 and Re,, = 0.1. After the initial
unsteady period (which is shrunk to zero at Re,, = 0, figure 9), spheres 1 and 2 possess essentially
the same velocities, which are 30-40 9, greater than the velocity of sphere 3.1 The velocity of
sphere 2 does not vary greatly from this point to the end of the experiment. Sphere 3, however
begins to accelerate due to the reduction in its drag created by the approach of the doublet con-
sisting of spheres 1 and 2. At the same time sphere 1 begins to decelerate due to the decrease in
the drag reduction effect produced by sphere 2 separating and moving away from it.

At some point in time, spheres 1 and 3 will have the same velocity, indicating that the spacing
parameters b and ¢ are equal. From that point on the velocities of spheres 2 and 3 will approach

1 Note spheres 1 and 2 will not separate if 5, is identically unity since this problem is the inverse of the near

collision problem for spheres 2 and 3 treated in § 5. Spheres 1 and 2 are then started from an effective touching
condition with b, = 1+¢, where ¢ < 1.
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604 S. LEICHTBERG AND OTHERS

each other while that of sphere 1 will decrease and asymptote to a value of U;/U; = 1.0, i.e. the
terminal settling velocity of a single isolated sphere. The relative velocity curves,

Uz,a(f) = Uz(’?)"Us(f) and [71,2(5) = Uz(f) - U1(f),

are shown in figure 11 for the same runs and also for Re,, = 0.01.

Figures 9 to 11 reveal that the practical effect of the unsteady terms in equation (4.1) is to
reduce the relative velocity U, , and hence the spacing  between spheres 1 and 2. This, in turn,
increases the relative velocity of approach between spheres 2 and 3, as shown in figure 11, since
the velocities of these two spheres are made unequal by their unequal interactions with sphere 1,

20} | | | I T T T T T

15

10

0.5

| | I | ] J ] ]
0 20 - 40 60 80

Ficure 9. Velocity-time curves for a three-sphere chain, by = 1,8 = 10, Re, = 0;
7y, is defined by &(iy) = 1.05.

the strength of the interaction being approximately inversely proportional to the spacing. The
lubrication limit between spheres 2 and 3 is, therefore, reached sooner (if by < ber), as a result of
including the unsteady and inertial forces. As expected from the foregoing discussion, the effect
of the unsteady forces, which increases with the Reynolds number, on the critical spacing curve
is a modest increase in ber(¢,), as shown in figure 7.

Of particular interest relevant to our previous discussion of figure 8 is the relatively large
difference in the relative velocity curves for the Re, = 0 and Re, = 0.01 cases observed in
figure 11. The results for the Re,, = 0.1 and Re, = 0.01 cases show that the approach to the
initial quasi-steady settling velocity is roughly two orders of magnitude longer than the initial
short time scale of O(Re,) over which the sphere’s inertia is important. A more detailed insight
into this behaviour can be had by examining the relative magnitudes of the different unsteady
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FiGure 10, Velocity—time curves for a three-sphere chain, §, ~ 1, & = 10, Re_, = 0.1, § = 1.1.
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Ficure 11. Relative velocity plotted against time for the two leading and trailing spheres of a three-sphere chain,
by~1,¢é =10, p = 1.1, Re, = 0.1, 0.01 and 0.
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forces acting on the three sphere system at different times in typical numerical experiments at

several values of Re,,. Such data are presented in table 2, where we have calculated the ratio of

each of the unsteady forces to the buoyancy force B at different times for the case §, ~ 1, &, = 10,

p = 1.1 at Re, = 0.1 and 0.01 for each of the three spheres. Equation (4.1) can be written in
& .

terms of these force ratios as F, F, Fy

—4a. ~ <m. it
B +(26+1) BT g . (7.4)
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606 S. LEICHTBERG AND OTHERS

One concludes from table 2 that the virtual mass and inertial forces have decayed to less than
29, of the buoyancy force when 7 = Re,, while the Basset force at this time is of comparable
magnitude to both the buoyancy and Stokes drag forces. The instantaneous velocity of the
spheres at f = Re,, is roughly a half of their initial quasi-steady settling velocity. The Basset force
is thus by far the most important unsteady force governing the transition to the long time scale
transient motion. The exact magnitude of the Basset force depends on the integrated time history
of the acceleration of each sphere and retains its significance a long time after the initial rapid
acceleration has died out. For example, the results in table 2 show that Fy/B for spheres 1 and 2
is approximately 0.19, 0.06 and 0.02 at ¢ = 10Re,, 100 Re, and 1000 Re,, respectively. It is this
slow decay of the initial transient motion due to the Basset force and its effect on the instantaneous
values of the A; that produces the unexpectedly large deviations from the Re,, = 0 theory results
observed in figures 8-11.

TABLE 2. FORCES ACTING ON THE THREE SPHERE SYSTEM FOR § = 1.1, b, =~ 1, § = 10

F./B Fom|B Fy|B
— -——A—*‘—_—"—\ r A hY r A Al
sphere sphere sphere sphere sphere sphere sphere sphere sphere
Re i 1 2 3 1 2 3 1 2 3

0

0.001 0.026 0.0256 0.037 2.05 x 10— 2.05 x 10—t 2.02x 107t 0.318 0.319 0.317
0.01 0.154 0.152 0.213 9.45x 102 9.48 x 102 8.60 x 102 0.544 0.545 0.512

0.1 0.1 0.492 0.490 0.594 1.55x 102 1.56 x 102 1.08 x 102 0.458 0.460 0.371
: 1 0.807 0.806 0.858 8.02x 104 8.05x 104 4.68 x 104 0.190 0.191 0.140
10 0.937 0.936 0.952 3.33x 105 3.561x10-5 3.44x 105 0.063 0.064 0.048

70 0.989 0.976 0971 —-595x10° —1.42x10-% —2.59%x10-¢ 0.011 0.024 0.029

0.0001 0.026 0.025 0.037 2.05x 10~ 2.05x 101 2.05x 107! 0.318 0.319 0.317
0.001 0.1564¢ 0.152 0.213 9.45%x 102 9.48 x 102 8.60x 102 0.544 0.5456 0.512
0.01 0.494 0.492 0.596 1.63 x 102 1.54x10-2 1.07x 102 0.457 0.459 0.369

0.014 0.1 0.807 0.806 0.858 8.00 x 10— 8.03 x 10-4 4.60 x 10— 0.190 0.191 0.140
1 0.937 0.937 0.954 2.93 x 105 2.95x 10-5 1.75x 1078 0.063 0.063 0.046

10 0.980 0.980 0.985 1.47x10-¢ 1.68x 108 2.73 x 108 0.020 0.020 0.015

70 0.997 0.993 0.991 —5.63x10% —1.65x10-¢ —4.02x1077 0.003 0.007 0.009

TABLE 3. SHORT AND LONG TIME SCALE BEHAVIOUR, b, ~ 1, & = 10, § = 1.1

Re,, %, £ 2b(%,)
10-1 1.36x 10-1 78.7 10.24
10-2 1.43x10-2 80.6 12.32
10-* 1.37x 104 82.4 13.62
0 - 82.6 13.78

Table 3 provides further interesting data, regarding the two-time-scale motion of the spheres,
for the b, ~ 1, §, = 10, p = 1.1 case at four different Reynolds numbers. Listed are values of
(@) %, the duration of the initial acceleration period in the long time coordinate, defined as that
point in time when the virtual mass force decays to less than 1 9%, of the buoyancy force; (b) f1, the
time required for sphere 2 to approach sphere 3 to within 0.05 diameters (¢ = 1.05) and (¢) the
separation distance 25(f;,) between spheres 1 and 2 at this time, given by

2b() = 2 +f: (U,— 0, di.

The effect of increasing Re,, is to decrease both 7, and b(f;,). Particularly striking are the large
changes in sphere spacing that result over an extended run due to the accumulated effect of the
Basset forces discussed in connection with figure 8. One also observes in table 3 that the virtual
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mass force decays to less than 1 9 of the buoyancy force when # ~ 1.4 Re.,. Thus, in terms of the
short time variable ¢*, #¥ ~ 1.4 independent of Re,.

In concluding this section, we shall take note of the consequences of the reversible nature of
a purely Stokes flow, i.e. Re,, = 0. Figure 12 presents the 5(f) and &(f) curves for the §, ~ 1,
¢, = 10, p = 1.1 case at two Reynolds numbers, Re,, = 0.1 and 0. These curves, like all previous
time plots, terminate at f = f;, defined by ¢(f;,) = 1.05. Figures 9-12, however, have been
extended (dotted lines) to include the extrapolated sphere motion as predicted by the present
truncation method following the onset of lubrication-limit forces for ¢(f) < 1.05.

10 I I T T T T T I T
- e(t) —
8|~ ’ d -
B Re, =01 7]
6 Re =0 _ 7]
S %@ y -
4= o T 7
S 8
L T, @ _
Q
i .
| | | | [ | L | {
0 20 40 60 80 100

i
F1GurE 12. Sphere spacings plotted against time for a three-sphere chain, §, & 1, & = 10,
g =1.1,Re, = 0.1 and 0.

A striking feature of the two Re,, = 0 spacing curves of figure 12 is the symmetry which exists
about the half-time point, 7 = 48.7. The same symmetry exists for the three Re,, = 0 velocity
curves in figure 9. Thus, at Re,, = 0, the second half of the experiment is an identical duplicate
of the first half], in reverse. This phenomenon of reciprocity in the spheres’ behaviour at zero
Reynolds number is due to the absolute reversibility of Stokes flow in the absence of unsteady
inertial forces. This non-directional nature of a pure Stokes flow also explains why two identical
objects settling as an isolated doublet have identical velocities, despite the fact that one is leading
and the other trailing. At non-zero Reynolds numbers, the reciprocity no longer exists because
of the unsteady forces, as observed for the Re,, = 0.1 curves in figure 12.

The reciprocity principle was used as a check on the over-all accuracy of the numerical pro-
cedures by conducting the 5, ~ 1 numerical experiment at Re,, = 0 and checking for compliance
with the reciprocal terminal condition 4 = &, It was found that the total accumulated error at
the end of a run was 0.40 %, 0.13 9, and 0.06 %, for ¢, = 20, 10, and 5, respectively.

8. RESULTS FOR CHAINS OF MORE THAN THREE SPHERES

Numerical runs were conducted for chains of 4-25 settling spheres, using the theory and the
numerical procedures developed in §§ 2—-6. These runs showed a behaviour pattern for long chain
which strongly suggested that chains of non-touching spheres will generally tend to break up into
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608 S. LEICHTBERG AND OTHERS

smaller groups. While the question of instability to lateral disturbances has not been carefully
examined at this time, the authors have observed the coaxial settling of as many as seven spheres
in the experimental apparatus described at the beginning of § 7.

Consider a chain of N spheres, N > 3, equally spaced at ¢ = 0, indexed from the trailing sphere
( = 1) to the leading sphere (j = N). Consider, too, as an accompanying example, figure 13,
which plots the time-dependent inter-sphere spacings DM ) (j=1,...,6) for a seven-sphere

chain at Re,, = 0 with an equal initial sphere spacing D; ;,,(0) = 2. In the initial equally spaced
configuration, the settling velocity is greatest for the central sphere, and decreases progressively
toward the ends of the chain. This neat ordering of the sphere velocities can degenerate when the
spacings are unequal, since a central sphere may settle more slowly than a non-central one if the
former is more isolated from its neighbours. However, for any configuration, the outer spheres
J =1andj = N necessarily experience less interaction than their immediate neighbours, j = 2
andj = N—1. Hence, U, > U, and Uy_, > Uy. As a result, the spacing between spheres 1 and 2,
D,,, is monotonically increasing as sphere 1 becomes more isolated, while the spacing between
spheres N—1 and N, Dy_, y, continually decreases until the gap is nearly closed and spheres
N—1 and N move as a steady doublet.

By this time, the spacing D,, has increased sufficiently to render sphere 1 fairly isolated, while
the other spacings, Dy, Dyy, ..., Dy_s y_1, have changed by smaller amounts. The problem is
now transformed to one of a chain of N — 1 interacting spheres headed by a doublet and followed
by a single, increasingly isolated sphere. Sphere 2 will now fall further behind, since it is now
effectively the trailing sphere of the chain. At the leading end of the chain the behaviour depends
on the spacings, as follows. If the spacing is such that Uy_, exceeds the velocity of the N— (N —1)
doublet, then the spacing Dy_, y_; decreases steadily until a triplet is formed. If, on the other
hand, the doublet’s velocity exceeds Uy_,, the doublet will move further ahead of the rest of the
chain until the doublet is nearly isolated. At this point spheres N — 2 and N — 3 start behaving like
the leading spheres of an N — 3 sphere chain, forming a doublet, and the cycle of events continues.

The numerical experiments were not carried beyond this point due to computer time limita-
tions, but the general pattern of the spheres’ behaviour is evident. The trailing third of a long
chain of spheres will disintegrate into a series of single, isolated spheres. The leading half to
two-thirds of the chain will break up into a series of doublets and triplets which, extrapolating
the pattern of behaviour for very long chains, would then recombine to form a series of short
unsteady chains.

Figure 13 illustrates the long chain behaviour discussed above for the time period 0 < 7 < 30.
The spacing Dy, was artificially constrained to remain constant at 1.05 diameters after the gap
narrowed to this lubrication limit.

9. RELATED WORK AND CONCLUDING REMARKS

The problem of the creeping motion of a finite chain of spheres in a cylindrically bounded
medium has also been solved by the authors using similar procedures to those described herein
and is currently being prepared for publication, Leichtberg e al. (19776 a). This latter work isbeing
used as the basis for a theoretical study of a possible hydrodynamic mechanism for the formation
of rouleaux in the microcirculation (1976 8). We have also been interested in the behaviour of the
three sphere problem for values of Re,, in the transition region where the length of the short time
scale 75 is of O(1) or larger. An approximate semi-analytic theory was, therefore, developed for
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Ficure 13. Sphere spacings plotted against time for a seven-sphere chain. ﬁ,, (0 =2(=12,..,6)
Re, = 0; 4, spacing is increasing; |, spacing is decreasing.

b

the Reynolds number range 1 < Re,, < 10 where convective inertial effects are important but
incipient wake bubble formation has not yet occurred. This study has been completed and will
be reported elsewhere (Gluckman, Pfeffer & Weinbaum, 1976).

The most interesting new result of the investigation, which would appear to be of general
validity for all multiparticle gravitational-Stokes flow interactions, is the importance of the
Basset force in flow configurations which are slowly changing due to particle interactions. The
theoretical and experimental results for the simple three-sphere geometry treated herein clearly
show that departures of O(1) from zero Reynolds number theory will result due to the cumulative
effect of the Basset force, when the particle Reynolds number 2a0,/v based on its terminal settling
velocity Uy is < 1 but the duration of the interaction is of O(Reza/U;) or longer. Since particles
in sedimenting flows usually travel many diameters before approaching boundaries, the above
condition is encountered in most applications. Virtual mass and particle acceleration forces, on
the other hand, are very short lived and in many applications can be neglected entirely. The

46 Vol. 282. A.
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610 S. LEICHTBERG AND OTHERS

results also indicate that both the virtual mass and Basset forces are not significantly altered by
multiparticle interaction effects and are thus adequately approximated by their single particle
representations for most engineering purposes.

The numerical results obtained in this study demonstrate that it is feasible with the present
generation of computers to examine the fluid—particle interaction between moderate numbers
of geometrically simple objects, provided a rapidly converging numerical technique can be
devised for calculating the instantaneous quasi-steady state drag on each object. The multipole
truncation technique developed in Gluckman ef al. (1971) was well suited to this objective for the
axisymmetric flow past spheres and spheroids. More than 10* quasi-steady three-sphere inter-
actions with drag results accurate to better than 0.1 9, could be obtained in less than a minute on
a moderate capacity present generation computer by means of this technique. The extension of
this technique to truncated spherical harmonic representations of arbitrary three-dimensional
multiple sphere configurations is currently in progress.

This research was supported by National Science Foundation Grant no. GK-40802.
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